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Abstract 
This paper addresses a high level spatio-temporal problem, namely "absolute orientation", which arises in visual-
odometry (using stereo), or registering two models created by different Structure from Motion (SFM) 
reconstructions.  We compare the very popular method due to Horn1 using quaternions and our own 
independently derived method using the orthogonal rotation matrix R.  We also introduce a novel approach for 
outlier rejection using spectral clustering2, 3. 

Introduction: Absolute orientation, Horn1, is a higher level spatio-temporal problem that arises in visual-
odometry, graphics, mesh registration, and extending 3D models from SFM or stereo.  The problem statement is 
simple: given two sets of matched points, p and q ∈ 3 , find the similarity transform that takes p into q, 
rejecting all outliers.  By similarity, we mean the translation, rotation and scale such that   qi = s * R * pi +ti, here 
s is the scale ambiguity (arising if p and q are SFM outputs), R is the 3x3 rotation matrix, and t is the translation. 

Several authors have already addressed this problem.  Perhaps the absolute reference on absolute orientation is 
Horn1, where a unit quaternion (on SO3) represents the rotation.   Horn, Hilden and Negahdaripour4 too address 
the absolute orientation problem, but use the rotation matrix R.  This approach is later rejected for reasons such 
as: 
• Rotation matrices have too many parameters – i.e. 9 instead of 4 parameters for quaternions. 
• Rotation matrices have "strange" constraints, i.e. R * RT has to be the 3x3 identity matrix, and det(R) = 1. 
• Lastly, quaternions are ideal for interpolative purposes compared to the rotation matrix R.5  

The first two objections are rather mute.  First, to solve for proper quaternion, Horn creates a 9x9 matrix and 
solves for variables bilinear in the elements of Q.  Second, a unit quaternion Q has to satisfy the constraint 
QiQ* = 1 where Q* is the conjugate of Q, andirepresents quaternion multiplication;  Horn addresses this 
using a Lagrange multiplier.   Regarding interpolation, Michaels and Boult are quite correct. While rotation 
matrices do not lend themselves, to interpolation, transforming them to Rodrigez representation is trivial. 

In the next section we provide a fast and robust LSQ technique to address the absolute orientation problem.  The 
subsequent section describes a new approach to outlier rejection, based on spectral clustering2, which has proven 
extremely robust.  In practice, of course, the outlier rejection is done first, followed by the LSQ solution. 

LSQ Solution.  The problem is to minimize the objective function  
G(R, t, s) = Σi  |pi - s * R * qi – t|2                           (1) 

with respect to s ∈ t ∈ 3 and R a rotation matrix.  Using a Lagrange Multiplier formulation, the stationary 
points are where the gradient of  W(R, t, s) = G(R, t, s) - ½ trace (M (I - RT*R) is 0.  Here, R is now any 3x3  
matrix, and M is a symmetric 3x3 matrix of Lagrange multipliers.  Umeyama6 extends the problem by adding in 
another Lagrange multiplier for the det(R)=1.  As we will see shortly, our approach provides a simpler solution 
to the problem.ii  The t component of the gradient shows that: 

    t = m(p) – s*R*m(q)                (1.1) 
where m(p) and m(q) are the centroids of the p and q sets of points.  Substituting this back into Eq 1, we get the 
same equation except t = m(p) = m(q) = 0, but the new q'i and p'i have the centroid m(p) and m(q) subtracted 
from qi and pi respectively.  The gradient of the new W with respect to s and R gives the two equations: 

       s Σi  |q'i|2  = trace (R K)           (2.1) 
               K = M RT / s                    (2.2) 

                                                 
i Notation: UPPERCASE BOLD ∈ 3x3 , lowercase bold ∈ 3, lowercase letter ∈ . 
ii We received the reference to Umeyama's work after our derivation.  Although outliers are not addressed in this work, the mathematical 
treatment is very elegant, and interested readers are encouraged to examine this work. 



where K = Σi q'i p'i
T.  Using R RT = I and M being symmetric and equation 2.2 (or the polar decomposition of K) 

we get M/s = sqrt (K KT)  where the square root has the eigenvalues (σ1>σ2> εσ3).  Hence, the σ’s  are also the 
singular values of K, and ε=sign(det(K)). The use of ε ensures that R is a rotation matrix and not a reflection.  
Using singular value decomposition of K=USVT then M=US'UT, where S'=diag(σ1, σ2 , εσ3 ) and substituting 
these into equation 2.2 and we have:  

           R = W UT                           (3.1)    

where W=V when ε = 1, and W is equal to V with a sign reversal on each element of the 3rd column when ε = -1.   
Moreover, using the R and K into 2.1 we have 

s = (σ1 + σ2 + ε σ3) / Σi  |q'i|2           (3.2) 
Equations 3.1, 3.2, and 1.1 (used in order) provide the least square solution for the similarity transform sought. 

Outlier Rejection: Let D1 and D2 be the symmetric matrices that contain the distance between every two points in p' 
and in q' respectively.  If W is the element by element division of D1 by D2 except for the diagonals which remain 0, 
then the elements of W are the scale factor, s, plus added noise.  The exception being the rows and columns of W 
corresponding to outliers (i.e., mismatched points).  One popular method of rejecting the outliers is RANSAC7.  But 
using spectral clustering, it can be shown that the eigenvector of W, e1, corresponding to W's largest Eigen value, is 
almost blockwise constant.  That is, for all elements of e1 only those that correspond to the rows (or columns) of W 
containing the outliers have values different from the rest.  The remaining values of e1 are almost all constant (with 
minor differences due to noise).  This gives us the following simple process to reject the outliers:  1) construct W. 2) 
find the eigenvector e1 for W's largest Eigen value. 3) sort e1, keeping track of the changes in indices. 4) create the 
permutation matrix Q by rearranging the columns of the identity matrix, I, according the changes in e1 indices. 5) 
create the matrix X = QT W Q.  X is diagonally block structured and s can easily be identified.  Note that one can 
also use RANSAC on the block diagonal elements of X, thus increasing its speed by reducing the number of outliers. 

Experimental Results:  Figure 1a shows the results of our Monte-Carlo simulations.  Three techniques, Horn, our 
SVD based derivation and QR decomposition of the matrix R derived using least squares were compared.  While the 
QR method was the fastest –see figure 1.a – it also generated the most unreliable solutions.  Our approach was faster 
than Horn's technique (or its equivalents), with the sum square error of the two methods being indistinguishable. 
Figures 1.b and 1.c show the structure of the X matrix for 40% outliers and (its element wise log) for 96% outliers! 

                       
                       (a)                                                                        (b)                                                                     (c) 
Figure 1. (a) The results of Monte Carlo simulation for Horn, QR, and our SVD based method. (b)  the block diagonal structure of the 

X matrix after spectral clustering for 40% outliers and (c) element wise log of matrix X for 96% outliers. 
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